Improved Bounds for the Crossing Number of the Mesh of Trees

نویسندگان

  • Robert J. Cimikowski
  • Imrich Vrto
چکیده

Improved bounds for the crossing number of the mesh of trees graph, Mn, are derived. In particular, we derive a new lower bound of 5n log n−44n 80 ‡ which improves on the previous bound of Leighton [11] by a constant factor, and an upper bound of (log n− 10 3 )n 2 + 8n− 20 3 . In addition, we construct drawings of Mn which achieve the upper bound number of crossings. We also prove that the crossing number of M4 is 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossing Number Bounds for the Mesh of Trees

Crossing number bounds for the mesh of trees graph are derived.

متن کامل

Topological Properties of Some Interconnection Network Graphs

Interconnection networks play a vital role in parallel computing architectures. We investigate topological properties of some networks proposed for parallel computation, based on their underlying graph models. The vertices of the graph correspond to processors and the edges represent communication links between processors. Parameters such as crossing number and thickness strongly aaect the area...

متن کامل

Bounds for the Co-PI index of a graph

In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Interconnection Networks

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2003